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Комбинацией методов сканирующей туннельной микроскопии (СТМ) и рентгеновской фотоэлектронной 
спектроскопии (РФЭС) исследованы закономерности формирования биметаллических Pd–Co-нано-
частиц, нанесенных на высокоориентированный пиролитический графит (ВОПГ). Установлено, что 
напыление кобальта на монометаллический образец Pd/ВОПГ приводит к формированию биметалли-
ческих наночастиц со структурой Pdядро–Coоболочка, которые в результате прогрева образцов в условиях 
сверхвысокого вакуума при температурах 400—500°C трансформируются в сплавные Pd–Co-наночастицы 
с равномерным распределением металлов. Прогрев образцов Pd–Co/ВОПГ в вакууме при температурах 
выше 500°C ведет к спеканию наночастиц. Показано, что адсорбционно-индуцированная сегрегация 
атомов палладия на поверхность биметаллических наночастиц происходит в результате обработки мо-
дельного катализатора Pd–Co/ВОПГ в среде монооксида углерода в диапазоне температур 25—250°C, 
при этом наблюдается колоколообразная зависимость с максимумом при 200°C. Показано, что биме-
таллические Pd–Co-наночастицы в модельном катализаторе устойчивы к спеканию в атмосфере CO 
вплоть до 250°C.
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ВВЕДЕНИЕ
Катализаторы на основе биметаллических на-

носистем привлекают широкое внимание ряда 
исследователей, в первую очередь, в области гете-
рогенного катализа [1—6]. Это связано с тем, что 
зачастую такие катализаторы демонстрируют более 
высокую стабильность, активность и/или селек-
тивность по сравнению с монометаллическими 
аналогами, то есть наблюдается синергический 

эффект. В частности, катализаторы на основе 
Pd–Co-систем перспективны для использования 
в целом ряде промышленно важных процессов, 
таких как электрокатализ [7—10], окисление CO 
[11, 12], селективное восстановление нитрогрупп 
до аминогрупп [13, 14], реакции кросс-сочетания 
[15, 16], селективное гидрирование тройной свя-
зи С≡С [17—20], в том числе ацетилена в этилен 
[21—23], и многие другие. Несмотря на большое 
число работ, посвященных биметаллическим ка-
тализаторам, причины возникновения синерги-
ческого эффекта до сих пор остаются дискусси-
онным вопросом и не поддаются обобщению для 
различных каталитических систем (катализатор + 
реакционная среда), что требует систематического 
исследования. Тем не менее, большинство ученых 

	 	

Сокращения и обозначения: СТМ – сканирующая туннель-
ная микроскопия; РФЭС – рентгеновская фотоэлектронная 
спектроскопия; ВОПГ – высокоориентированный пироли-
тический графит; λ – длина свободного пробега электрона; 
<d> – средний размер частиц; ρN – плотность нанесения 
частиц; Есв – энергия связи.
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варьировать количество двойных Pd2-центров 
и изолированных атомов палладия на поверх-
ности биметаллического образца, что влияет 
на каталитическую активность и селективность 
в реакциях селективного гидрирования связи 
C≡C в C=C. Впоследствии эффекты адсорбци-
онно-индуцированной сегрегации, позволяющие 
управлять активными центрами и каталитиче-
скими свойствами в реакциях селективного ги-
дрирования алкинов, были изучены и для других 
биметаллических катализаторов как на основе 
твердых растворов замещения (например, Pd–Ag 
[39—41], Pd–Au [36, 42—45]) с использованием 
CO, так и на основе интерметаллических систем 
(в частности, PdIn [44, 46—50]) с использованием 
кислорода. Полученные знания внесли суще-
ственный вклад в понимание сегрегационных 
процессов для различных типов биметаллических 
частиц и позволили сформулировать опреде-
ленные рекомендации по их применению для 
управления каталитическими свойствами [51].

Что касается Pd–Co-систем, относящихся 
к катализаторам на основе твердых растворов 
замещения [52], то в настоящее время имеется 
лишь несколько работ [11, 23], в которых эффек-
ты адсорбционно-индуцированной сегрегации 
рассматриваются в качестве инструмента для 
постсинтетической трансформации поверхности. 
Так, в [11] исследовали окисление CO на ка-
тализаторах Pd–Co/Al2O3 с различным соот-
ношением Pd/Co. Было показано, что в случае 
биметаллических катализаторов (наиболее ак-
тивный — Co0.24Pd0.76/Al2O3) наблюдается по-
нижение температуры, при которой достигается 
100% конверсия CO, по сравнению с монометал-
лическим палладиевым образцом (за исключе-
нием образца с большим содержанием кобальта 
(Co0.52Pd0.48/Al2O3), активность которого была 
ниже монометаллического палладия). Методом 
РФЭС в режиме in situ было установлено, что 
воздействие CO при температурах 200—300°C 
приводит к сегрегации палладия на поверхность, 
в то время как при обработке в кислороде или 
в смеси CO + O2 — к сегрегации кобальта с обра-
зованием CoOx. По мнению авторов, при низких 
содержаниях кобальта сосуществование на по-
верхности металлического палладия и CoOx 
является причиной синергического действия 
Pd–Co-катализатора: атом кислорода из CoOx 
может мигрировать на соседний атом палладия, 
связанный с адсорбированным CO, образуя CO2, 
в то время как CO из газовой фазы может быть 
окислен путем взаимодействия с решеточным 

считают, что изучение поверхности функциони-
рующего катализатора является ключевым факто-
ром в понимании роли второго металла и причин 
синергического действия [24—28]. Это связано 
с тем, что введение второго металла в монометал-
лический катализатор приводит к формированию 
специфических активных центров биметалличе-
ских наночастиц на поверхности (геометрический 
эффект) и изменению электронных свойств пер-
вого металла (электронный эффект) [5, 6]. Сле-
довательно, прослеживается взаимосвязь между 
каталитическими свойствами биметаллического 
катализатора и структурой поверхности активного 
компонента.

Структура и химический состав биметал-
лических наночастиц определяются на стадии 
приготовления катализатора. Однако, как неод-
нократно было показано, они могут изменяться 
впоследствии в результате различных постсин-
тетических обработок или в ходе реакции [3, 4, 
29, 30]. С одной стороны, возможная эволюция 
структуры биметаллических наночастиц под дей-
ствием реакционной смеси приводит к необ-
ходимости проводить исследования в режимах 
in situ/operando, то есть непосредственно в ходе 
реакции, что позволяет получать информацию 
об активных центрах, а также различных ин-
термедиатах, образующихся только в условиях 
протекания реакции [31—36]. С другой стороны, 
изменение состава поверхности биметаллическо-
го катализатора в результате предварительной 
обработки в различных газовых средах выступа-
ет основой новой концепции — использование 
эффекта адсорбционно-индуцированной сегре-
гации, то есть эффекта обогащения поверхности 
биметаллической наночастицы одним из ком-
понентов в результате адсорбции газа-адсорба-
та, в качестве инструмента тонкой настройки 
структуры активных центров и, как следствие, 
управления каталитическими характеристиками. 
В основе данной концепции лежит идея форми-
рования на этапе предактивационной обработки 
активных центров, необходимых для протекания 
каталитической реакции с желаемым балансом 
активности и селективности. Активные центры, 
сформированные в результате предварительной 
обработки, должны быть стабильными в ходе 
реакции, что характерно для процессов, проте-
кающих в мягких условиях (<200°C). Впервые 
осуществимость такого подхода была продемон-
стрирована Андерсоном и соавт. [37, 38]. На при-
мере PdCu/Al2O3 катализаторов авторы показали, 
что предварительная обработка в CO позволяет 
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кислородом из CoOx. В работе [23] было иссле-
довано влияние H2-индуцированной сегрега-
ции на каталитические свойства катализаторов 
Pd–Co/Al2O3 с различным соотношением ме-
таллов в реакции селективного гидрирования 
ацетилена. Исследование образцов Pd0.75Co0.25/
Al2O3 и Pd0.15Co0.85/Al2O3 после обработки в сме-
си 10% H2/Ar при 700°C методом РФЭС показало, 
что происходит увеличение атомного отношения 
Pd/Co по сравнению с аналогичной обработ-
кой при 400°C (на 32 и 14% соответственно). 
Согласно данным ИК-спектроскопии адсорби-
рованного CO, оба образца, восстановленные 
при 400°C, характеризуются формированием 
как многоатомных, так и изолированных цен-
тров палладия, в то время, как восстановление 
образцов при 700°C способствует образованию 
только многоатомных Pdn-центров для образ-
ца Pd0.75Co0.25/Al2O3 и только изолированных 
центров Pd1 для образца Pd0.15Co0.85/Al2O3. Ка-
талитические испытания показали, что образец 
Pd0.75Co0.25/Al2O3, восстановленный при 700°C, 
проявляет более высокую активность по срав-
нению с образцом Pd0.15Co0.85/Al2O3, который 
в свою очередь характеризуется максимальной 
селективностью, вплоть до 88% при 100% кон-
версии ацетилена. Таким образом, имеющиеся 
в литературе данные являются разрозненными 
и недостаточными для того, чтобы адсорбци-
онно-индуцированная сегрегация могла быть 
эффективно использована для управления 
структурой активных центров и каталитических 
свойств биметаллических Pd–Co-катализаторов. 
Для подобных целей необходимо проведение 
детального систематического исследования 
с применением современных физико-химиче-
ских поверхностно-чувствительных методов. 
Однако стоит отметить, что в области науки о по-
верхности изучение реальных катализаторов 
в значительной мере затруднено, что связано, 
как правило, с низким содержанием активного 
компонента на поверхности, сложным составом 
и морфологией поверхности, непроводящим 
носителем и некоторыми другими факторами. 
Использование в качестве объектов исследова-
ния монокристаллов и поликристаллических 
фольг, с одной стороны, дает возможность обой-
ти упомянутые выше методические ограничения, 
но, с другой стороны, приводит к возникновению 
проблемы “несоответствия материала”, то есть 
корректного переноса полученных данных с мо-
дельных систем на реальные катализаторы [31]. 
Применение образцов, в которых наночастицы 

активного компонента наносятся на планарный 
проводящий носитель, позволяет преодолевать 
методические ограничения, при этом такие мо-
дельные системы имитируют свойства реального 
катализатора: например, появляется возмож-
ность исследования размерного эффекта или 
взаимодействия металл-носитель, вследствие 
чего данные, полученные для этих систем, могут 
быть корректно экстраполированы на реальные 
катализаторы. Одним из планарных носителей, 
который можно эффективно использовать для 
синтеза таких модельных систем, является вы-
сокоориентированный пиролитический графит 
(ВОПГ) [53—61].

Настоящая работа посвящена приготовле-
нию модельных биметаллических Pd-Co/ВОПГ 
катализаторов с заданными характеристика-
ми с применением метода последовательного 
термического вакуумного напыления металлов 
и исследованию закономерностей формирова-
ния наночастиц активного компонента в за-
висимости от условий термической обработки 
в сверхвысоком вакууме (СВВ) или в результате 
обработки поверхности модельного катализатора 
в атмосфере CO при различных температурах 
с использованием комбинации методов рент-
геновской фотоэлектронной спектроскопии 
(РФЭС) и сканирующей туннельной микро-
скопии (СТМ).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
Материалы

Коммерчески доступный высокоориентиро-
ванный пиролитический графит (NT-MDT, ZYA, 
Нидерланды, мозаичность 0.3—0.5°, 7 × 7 × 0.8 мм) 
применяли в качестве подложки. Для синтеза би-
металлических катализаторов Pd–Co/ВОПГ ис-
пользовали ранее разработанную методику после-
довательного термического вакуумного напыления 
металлов, которая подробно описана в работах 
[34, 44, 49, 62, 63]. Приготовление образцов осу-
ществляли в камере подготовки рентгеновско-
го фотоэлектронного спектрометра (“SPECS”, 
Германия), расположенного в Институте ката-
лиза СО РАН (Новосибирск, Россия) (данный 
спектрометр также снабжен камерами быстрой 
загрузки, камерой анализатора и ячейкой высо-
кого давления). Подготовку поверхности носи-
теля проводили путем удаления верхних слоев 
с использованием клейкой ленты с последующим 
прогревом в условиях СВВ при температуре 600°C 
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в течение 1 ч. Нагрев производили электронным 
ударом с тыльной поверхности держателя образца. 
Мягкое травление поверхности ионами аргона 
осуществляли с использованием аргоновой пуш-
ки IQE11/35 (“SPECS”, Германия) (параметры 
травления: P(Ar) = 3 × 10–6 мбар, ускоряющее 
напряжение — 500В, время — 3—4 с). Термиче-
ское вакуумное напыление палладия и кобаль-
та выполняли с помощью системы напыления 
EFM‑3 (“Omicron”, Германия) путем испарения 
металлов на подложку (источниками металлов 
служили палладиевая (99.99%) и кобальтовая 
(99.99%) фольги, помещенные в танталовые тиг-
ли). Применяли следующие условия напыления: 
ток эмиссии 2.41 А в случае кобальта и 2.59 А 
в случае палладия, ускоряющее напряжение 
в обоих случаях составляло 900 В, количество 
нанесенных металлов варьировали продолжи-
тельностью напыления. Источник располагался 
в нормальном положении к поверхности образца 
на расстоянии ~1 см.

Рентгеновская фотоэлектронная  
спектроскопия

Приготовленные образцы характеризовали 
с использованием рентгеновского фотоэлек-
тронного спектрометра (“SPECS”, Германия), 
камера анализатора которого содержит полус-
ферический анализатор PHOIBOS‑150-MCD‑9, 
немонохроматизированный источник рентгенов-
ского излучения XR‑50 с Al/Mg-анодом, рентге-
новский монохроматор FOCUS‑500 с монохро-
матизированным источником рентгеновского 
излучения XR‑50M и Al/Ag-анодом. В работе 
применяли как монохроматизированное AlKα 
(hν = 1486.74 эВ, 200 Вт), так и немонохромати-
зированное MgKα (hν = 1253.6 эВ, 200 Вт) излуче-
ния. Равномерность шкалы энергии связи была 
предварительно откалибрована по положениям 
Au4f7/2 (84.0 эВ) и Cu2p3/2 (932.7 эВ) от металли-
ческих золотой и медной фольг. Давление в ка-
мере анализатора не превышало 5 × 10–9 мбар. 
Для получения информации о химическом 
состоянии элементов на поверхности произ-
водили запись узких спектральных регионов: 
C1s, Pd3d, Co2p, O1s, Ar2p, Pd M4N45N45 (далее 
для краткости Pd MNN), Co L2M23M45 (далее 
для краткости Co LMM). Анализ и разложение 
на индивидуальные компоненты записанных 
РФЭ-спектров выполняли с использованием 
программного обеспечения XPSPeak 4.1 [64]. 
Калибровку РФЭ-спектров осуществляли по по-
ложению линии C1s (284.5 эВ) от графитоподоб-

ного углерода, входящего в состав носителя [65]. 
Атомные отношения элементов на поверхности 
рассчитывали из соотношения интегральных 
интенсивностей записанных РФЭ-спектров, 
нормированных на соответствующие коэффици-
енты атомной чувствительности [66]. Значения 
длин свободного пробега фотоэлектронов (λ) 
с различной кинетической энергией оценивали 
с помощью программы QUASES-IMFP-TPP2M 
[67], глубину анализа, согласно литературным 
данным [68], приняли за 3λ, где λ — длина сво-
бодного пробега электрона.

Изучение закономерностей формирования 
сплавных биметаллических Pd–Co-наночастиц, 
нанесенных на ВОПГ, и исследование их терми-
ческой стабильности выполняли в камере подго-
товки фотоэлектронного спектрометра. Для этого 
приготовленные образцы ступенчато прогревали 
в вакууме при различных температурах до 620°C 
с последующей регистрацией РФЭ-спектров после 
каждого прогрева.

Влияние CO на состав поверхности Pd-Co/
ВОПГ катализаторов изучали в ячейке высокого 
давления фотоэлектронного спектрометра. Данная 
ячейка позволяет проводить обработку образца 
в различных газовых средах при давлении до 1 атм 
в диапазоне температур от комнатной до 500°C [48] 
с дальнейшим его переносом в камеру анализатора 
спектрометра для регистрации РФЭ-спектров без 
промежуточного контакта с воздухом. Таким об-
разом, Pd–Co/ВОПГ обрабатывали в 120 мбар CO 
при температурах 25, 100, 150, 200, 250°C и вновь 
25°C. После каждой обработки в СО образцы пе-
ремещали в камеру анализатора спектрометра для 
записи РФЭ-спектров.

Сканирующая туннельная микроскопия
Исследование методом СТМ осуществляли 

с помощью высоковакуумного сканирующего 
туннельного микроскопа RHK 7000 VT (“RHK 
Technology”, США). Проволоку из Pt/Ir-сплава 
диаметром 0.15 мм, срезанную под углом 45°, ис-
пользовали для создания игл. Для калибровки 
сканера применяли реперный образец чистого 
ВОПГ. Запись СТМ-изображений выполняли 
в режиме постоянного туннельного тока. Средний 
размер частиц (<d>) определяли по формуле

d N d N
i

i i
i

i�� = ×( ) ( )∑ ∑ ,

где Ni — количество частиц с размером di.
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РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
Формирование сплавных биметаллических  

Pd–Co-наночастиц и изучение  
их термической стабильности  

в условиях сверхвысокого вакуума
На первом этапе работы были приготовле-

ны модельные биметаллические катализаторы 
Pd–Co/ВОПГ (PdСo/ВОПГ‑1 и PdСo/ВОПГ‑2), 
а также монометаллический образец сравнения 
Pd/ВОПГ. Согласно описанной в эксперимен-
тальной части и в работах [34, 62, 63, 69] методике, 
на три образца ВОПГ, поверхность которых была 
предварительно модифицирована в одинаковых 
условиях ионами аргона, методом термического 
вакуумного напыления при комнатной темпе-
ратуре производили нанесение первого металла 
(палладий) с последующим нагревом образца 
в СВВ при температуре 300°C в течение 1 ч (что 
необходимо для “залечивания” дефектов и ста-
билизации наночастиц на поверхности [53]). 
Два образца Pd/ВОПГ были выбраны в каче-
стве монометаллических матриц для нанесения 
второго металла — кобальта — и приготовления 
биметаллических катализаторов Pd–Co/ВОПГ, 
а третий был взят в качестве монометаллического 
образца сравнения. Согласно данным РФЭС, 
такая процедура позволила получить образцы, 
характеризующиеся близким содержанием нане-
сенных металлов и атомным отношением Pd/Co 
(табл. 1). Необходимо отметить, что в ходе синтеза 
всех образцов параметры напыления палладия 
и кобальта (см. Экспериментальную часть), в том 
числе продолжительность напыления (12 мин 
в случае палладия и 30 мин в случае кобальта), 
были одинаковыми.

Как было показано ранее, в случае твер-
дых растворов замещения, в частности, систем 
Pd–Ag [62], Pd–Cu [63] и Pd–Au [69], использо-
вание методики последовательного термического 
вакуумного напыления металлов дает возмож-
ность формировать наночастицы со структурой 

ядро-оболочка, нанесенные на ВОПГ, последу-
ющий прогрев (после стадии нанесения второго 
металла) в условиях сверхвысокого вакуума при 
температурах 400—450°C приводит к формиро-
ванию сплавных биметаллических частиц с рав-
номерным распределением металлов по объему. 
Таким образом, напыление кобальта на моно-
металлический Pd/ВОПГ образец должно при-
водить к образованию наночастиц со структурой 
Pdядро–Coоболочка, а последующий прогрев при-
готовленного биметаллического образца в СВВ 
при определенной температуре, значение кото-
рой необходимо определить, — к формированию 
сплавных Pd–Co-наночастиц. В качестве объекта 
исследования, используемого для установления 
условий формирования сплавных биметалличе-
ских наночастиц Pd–Co, а также границ их тер-
мической стабильности в условиях сверхвысокого 
вакуума, был выбран образец PdCo/ВОПГ‑2. Для 
этого образец PdCo/ВОПГ‑2 после стадии напы-
ления кобальта был ступенчато прогрет в вакууме 
до 620°C в камере подготовки фотоэлектронно-
го спектрометра с последующей регистрацией 
РФЭ-спектров после каждой стадии темпера-
турной обработки (данные, полученные мето-
дом РФЭС для данного образца, будут детально 
обсуждаться ниже). Для исследования морфо-
логии поверхности методом СТМ монометалли-
ческий Pd/ВОПГ и исходный биметаллический 
PdCo/ВОПГ‑1 (после нанесения второго металла) 
перемещали через атмосферу в вакуумную камеру 
сканирующего туннельного микроскопа.

На рис. 1а, 1б приведены СТМ-изображения, 
а также гистограммы распределения наноча-
стиц по размерам для исходных образцов моно-
металлического Pd/ВОПГ и биметаллического 
PdCo/ВОПГ‑1. Монометаллический Pd/ВОПГ 
(рис. 1а) характеризуется узким распределени-
ем частиц по размерам со средним значением 
(<d>) 3.1 нм с плотностью нанесения частиц 
(ρN) в 4.64 × 1012 см‑2. Биметаллический обра-
зец PdCo/ВОПГ‑1 (рис. 1б) со средним размером 

Таблица 1. Атомные отношения элементов в приготовленных образцах, полученные из данных РФЭС

Образец Pd/C Co/C Pd/Co

Pd/ВОПГ 0.012 – –

PdСo/ВОПГ‑1 0.012 0.015 0.80

PdСo/ВОПГ‑2 0.011 0.014 0.78

PdСo/ВОПГ‑3 0.013 0.011 1.13

Прочерки означают, что на указанной стадии приготовления образцов отсутствует соответствующий металл.
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частиц 3.5 нм характеризуется более широким 
распределением частиц по размерам со сме-
щением в область больших значений в сравне-
нии с монометаллическим образцом Pd/ВОПГ 
(рис. 1а). Принимая во внимание, что латеральная 
плотность наночастиц в биметаллическом образце 
практически такая же, как и в монометалличе-
ском (4.56 × 1012 см‑2), совокупность данных, 
полученных методом СТМ, свидетельствует о том, 
что при напылении кобальта на монометалличе-
ский образец Pd/ВОПГ преимущественно про-
исходит формирование биметаллических Pd–Co, 
а не монометаллических Pd- и Co-наночастиц. 
Для образца PdCo/ВОПГ‑2, прогретого до 620°C 
в вакууме, средний размер частиц существенно 

больше (5.1 нм) (рис. 1в), а плотность нанесе-
ния частиц меньше в 2.4 раза (1.87 × 1012 см‑2), 
чем для исходного биметаллического образца 
PdCo/ВОПГ‑1 (рис. 1б) (после стадии нанесе-
ния). Катализатор PdCo/ВОПГ‑2 после прогрева 
характеризуется более широким распределени-
ем наночастиц по размерам; данное различие 
обусловлено бо́льшим количеством сплавных 
наночастиц с размером 6—8 нм. Как было пока-
зано ранее [34, 44, 49, 62, 63], данная методика 
приготовления является воспроизводимой при 
одних и тех же параметрах травления поверх-
ности ВОПГ ионами аргона и последующего 
термического вакуумного напыления металлов. 
Ввиду этого использование одинаковых условий 
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Рис. 1. СТМ-изображения (100 × 100 нм2), гистограммы распределения частиц по размерам и их средний размер для мо-
нометаллического Pd/ВОПГ (а), исходного биметаллического PdCo/ВОПГ‑1 (б) и биметаллического PdCo/ВОПГ‑2 после 
прогрева в вакууме при 620°C в течение 1 ч (в). Параметры сканирования: 0.42 нА, 1.49 В (а); 0.47 нА, 1.52 В (б); 0.33 нА, 
1.50 В (в).
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приготовления монометаллических образцов 
Pd/ВОПГ со схожими параметрами как мягкого 
травления ионами аргона, так и последующего 
нанесения палладия с заданным атомным отно-
шением Pd/C позволяет готовить монометалличе-
ские матрицы со схожими размерами наночастиц 
и плотностью их нанесения на поверхности. По-
следующее нанесение кобальта на монометал-
лические образцы Pd/ВОПГ с эквивалентными 
характеристиками с использованием одних и тех 
же условий напыления второго металла должно 
приводить к формированию биметаллических ка-
тализаторов Pd-Co/ВОПГ с близкими размерами 
и плотностью нанесения частиц. Соответственно, 

уменьшение плотности нанесения наночастиц 
на ВОПГ, а также увеличение их среднего раз-
мера для образца PdCo/ВОПГ‑2 по сравнению 
с исходным катализатором PdCo/ВОПГ‑1 ука-
зывает на спекание биметаллических частиц при 
прогреве PdCo/ВОПГ‑2 до 620°C.

На рис. 2 представлены РФЭ-спектры Pd3d 
и Co2p, записанные для образца PdCo/ВОПГ‑2, 
ступенчато прогретого до 620°C. РФЭ-спектры 
Pd3d для всех экспериментальных точек рас-
кладываются на два дублета с энергиями связи 
Есв(Pd3d5/2) = 335.7 и 337.0 эВ. Пик с Есв = 335.7 эВ 
характерен для наночастиц палладия в металличе-
ском состоянии [34, 62, 63, 69]. Пик со значением 

(а) (б)

346 340342344 338 336 332334
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Рис. 2. РФЭ-спектры Pd3d (а) и Co2p3/2 (б) образца PdCo/ВОПГ‑2, прогретого при разных температурах в условиях сверх-
высокого вакуума.
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энергии связи 337.0 эВ может быть отнесен к на-
нокластерам палладия, закрепленным на дефектах 
носителя, сформированных в результате бомбар-
дировки поверхности ВОПГ ионами аргона [58, 
63, 69, 70]. Аналогичные пики и их положения 
наблюдались и для монометаллического образца 
Pd/ВОПГ (не представлены на рисунке). Стоит 
отметить, что согласно литературным данным при 
образовании сплавных Pd–Co-наночастиц РФЭ-
спектр Pd3d должен смещаться в сторону больших 
значений Есв, а Co2p — в область меньших [22, 
71—73] за счет переноса электронной плотности 
с кобальта на палладий, причем величина сдвига 
линии Pd3d5/2 зависит от содержания кобальта. 
Так, например, в работе [22] было показано, что 
в образцах Pd1Cox/C сдвиг достигает +0.4 эВ при 
x ≥ 2 и порядка +0.1 эВ при x ≤ 1 (как в нашем 
случае, табл. 1). С другой стороны, укрупнение 
частиц вследствие их спекания должно приводить 
к небольшому смещению пиков в РФЭ-спектрах 
в область меньших значений Есв. Таким образом, 
в случае одновременного протекания процессов 
образования Pd–Co-сплава и спекания наноча-
стиц положения энергий связи в РФЭ-спектрах 
могут оставаться неизменными. РФЭ-спектр 
Co2p3/2 для исходного биметаллического об-
разца PdCo/ВОПГ‑2 (рис. 2б, 25°C) разложен 
на пять компонент с Есв = 778.8, 781.1, 784.3, 
782.3 и 786.9 эВ. Три компоненты с энергиями 
связи около 778.8, 781.1 и 784.3 эВ, параметры 
разложения которых (относительное положение, 
относительная интенсивность и т.д.) были полу-
чены при анализе чистой кобальтовой фольги, 
соответствуют основной линии для наночастиц 
кобальта в металлическом состоянии (~778.8 эВ) 
и двум соответствующим сателлитам (~781.1 
и 784.3 эВ). Другие пики (~782.3 и 786.9 эВ), ко-
торые отсутствовали в РФЭ-спектре кобальтовой 
фольги, но наблюдались для образца сравнения 
Co/ВОПГ (Co/C = 0.014, <d> = 2.1 нм), приго-
товленного в аналогичных условиях (не представ-
лены на рис. 2), отнесены, как и в случае палла-
дия, к нанокластерам металлического кобальта, 
закрепленным в дефектах носителя (~782.3 эВ), 
и соответствующему сателлиту (~786.9 эВ). Про-
грев образца PdCo/ВОПГ‑2 в сверхвысоком ва-
кууме при температурах от 400°C и выше приводит 
к смещению пика, характерного для металли-
ческого кобальта, в область меньших значений 
Есв на ~0.3 эВ, что свидетельствует о формиро-
вании сплава [72—74].

Из представленных на рис. 2 РФЭ-спектров 
были рассчитаны атомные отношения Pd/Co, 

Pd/C, Co/C и (Pd + Co)/C (рис. 3). Из приведен-
ных данных видно, что в диапазоне температур 
от комнатной до 500°C атомное отношение Pd/C 
практически не изменяется. Это может свидетель-
ствовать о том, что спекание наночастиц в данном 
температурном диапазоне не происходит. Одно-
временно с этим атомное отношение Co/C умень-
шается при прогреве образца до 500°C на ~43%. 
Кобальт наносили в качестве второго металла, при-
чем плотность нанесения частиц при этом прак-
тически не изменилась (рис. 1). Это означает, что 
в процессе нанесения подавляющее большинство 
атомов кобальта закреплялись на наночастицах 
палладия. С учетом данного факта уменьшение 
атомного отношения Co/C при прогреве вплоть 
до 500°C может быть обусловлено диффузией ато-
мов кобальта в объем биметаллической наночасти-
цы, а не спеканием монометаллических Co- и/или 
биметаллических Pd–Co-наночастиц. Кроме того, 
при прогреве образца в диапазоне температур 
от комнатной до 400°C атомное отношение Pd/Co 
возрастает с 0.78 до ~0.94, что также свидетель-
ствует о перераспределении металлов. Дальней-
шее повышение температуры прогрева до 500°C 
не приводит к каким-либо значимым изменени-
ям атомного отношения Pd/Co. Таким образом, 
можно заключить, что после нанесения кобальта 
происходит формирование частиц со структу-
рой Pdядро–Coоболочка, а прогрев образца в СВВ 
условиях до 400—500°C приводит к диффузии 
кобальта внутрь наночастиц, т.е. к образованию 
Pd–Co-сплава, в котором распределение металлов 
становится более равномерным по глубине.

При температуре 540°C наблюдается дальней-
шее увеличение атомного отношения Pd/Co до ~1.0 
(рис. 3), которое затем практически не меняется 
вплоть до 620°C, однако атомные отношения Pd/C 
и Co/C, а также общее содержание металлов на по-
верхности ((Co + Pd)/C) резко уменьшаются, что 
указывает на существенное спекание наночастиц 
в данных условиях. Необходимо подчеркнуть, что 
при прогреве образца вплоть до 500°C спекания 
наночастиц практически не происходит, ввиду чего 
сдвиг положения линии Co2p в область меньших 
значений энергии связи (рис. 2б) преимуществен-
но обусловлен изменением электронных свойств 
кобальта за счет образования Pd–Co-сплава. Та-
ким образом, установлено, что сплавные наноча-
стицы Pd–Co формируются в результате прогрева 
образца в СВВ при 400—500°C, а прогрев при бо-
лее высоких температурах приводит к спеканию 
наночастиц.
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Для получения дополнительной информации 
о процессах, происходящих на поверхности образ-
цов Pd–Co/ВОПГ в ходе их прогрева в условиях 
сверхвысокого вакуума, кроме фотоэлектрон-
ных пиков (Pd3d и Co2p) можно проанализиро-
вать Оже-линии палладия и кобальта (Pd MNN 
и Co LMM). Хорошо известно, что глубина анализа 
в методе РФЭС зависит от кинетической энергии 
эмитированных электронов и обычно оценивает-
ся как 3λ [68], где λ — длина свободного пробега 
электрона. Использование синхротронного из-
лучения дает возможность варьировать энергию 
падающих фотонов и тем самым изменять кине-
тическую энергию эмитированных электронов, 
т.е. проводить неразрушающее профилирование 
образца по глубине. Применение рентгеновской 
трубки в качестве источника первичного излучения 
не позволяет изменять энергию падающих фото-
нов. Тем не менее, дополнительные возможности 
появляются при исследовании биметаллических 
Pd–Co-систем с использованием MgKα-излучения 
в качестве источника фотонов. Это связано с тем, 
что кинетические энергии электронов, эмитиро-
ванных с уровней Pd3d и Co LMM, сильно отлича-
ются от кинетических энергий электронов, эми-
тированных с уровней Co2p и Pd MNN. В табл. 2 

приведены значения длин свободного пробега 
электронов через кобальт (λCo) и через палладий 
(λPd) для электронов, эмитированных с различ-
ных уровней, при применении MgKα-излучения. 
С использованием этих величин были рассчитаны 
средние значения длин свободного пробега (<λ>) 
и оценена глубина анализа (выхода фотоэлектро-
нов) (3<λ>) в каждом случае. Из табл. 2 видно, 
что значения глубин выхода электронов, эми-
тированных с уровней Co2p и Pd MNN, близки 
и составляют около 2.61 и 2.07 нм соответственно. 
То же самое наблюдается и для электронов, эми-
тированных с уровней Pd3d и Co LMM: глубина 
выхода составляет 4.14 и 3.66 нм соответственно, 
что практически в два раза больше значений, ха-
рактерных для Co2p и Pd MNN. Таким образом, 
анализ спектров Pd MNN и Co2p дает информа-
цию о процессах, происходящих на поверхности 
Pd–Co-наночастиц (глубина анализа до ~2 нм), 
в то время как Pd3d и Co LMM — о более глубоких 
слоях (глубина анализа до ~4 нм).

Для проведения экспериментов, описан-
ных выше, был приготовлен еще один обра-
зец (PdCo/ВОПГ‑3) согласно описанной ранее 
методике. По данным РФЭС, исходный обра-
зец PdCo/ВОПГ‑3 характеризовался атомным 
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Рис. 3. Атомные отношения элементов на поверхности, рассчитанные из РФЭ-спектров Pd3d, Co2p и C1s, для образца 
PdCo/ВОПГ‑2, прогретого при разных температурах в условиях сверхвысокого вакуума.
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отношением Pd/Co = 1.13 (рис. 4, табл. 1). После 
контакта с воздухом атомное отношение Pd/Co 
падает до 0.66 за счет образования поверхностного 
оксида кобальта. Отношения интегральных интен-
сивностей пиков Pd MNN/Pd3d и Co LMM/Co2p 
также уменьшаются, что свидетельствует о лока-
лизации кобальта в самых верхних слоях биме-
таллических наночастиц. После контакта с воз-
духом (при перемещении в микроскоп для ис-
следования методом СТМ) образец помещали 
обратно в камеру фотоэлектронного спектрометра  

и прогревали в условиях сверхвысокого вакуу-
ма при 500°C (определенная ранее температу-
ра, при которой происходит формирование 
сплавных Pd–Co-наночастиц). Как и в случае 
PdCo/ВОПГ‑2, атомное отношение Pd/Co по-
сле прогрева PdCo/ВОПГ‑3 возрастает до 1.62, 
т.е. становится больше, чем в исходном образце 
(1.13) на ~43%, что указывает на перераспределе-
ние металлов и образование сплава. Кроме того, 
из рис. 4 видно, что отношения интенсивностей 
Pd MNN/Pd3d и Co LMM/Co2p увеличиваются 

Таблица 2. Длина свободного пробега электронов, эмитированных с остовных уровней Pd3d и Co2p, a также Pd 
MNN и Co LMM Оже-линий, и значение их кинетических энергий (излучение MgKα)

Регион Eкин, эВ λPd, нм λCo, нм <λ>, нм 3<λ>, нм

Pd3d 917.9 1.31 1.45 1.38 4.14

Pd MNN 326.8 0.66 0.72 0.69 2.07

Co2p 475.0 0.83 0.91 0.87 2.61

Co LMM 773.3 1.16 1.28 1.22 3.66
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после контакта с воздухом и становятся даже боль-
ше, чем в исходном образце. Поскольку эмити-
рованные электроны, соответствующие регионам 
Pd MNN и Co2p, обладают меньшей глубиной 
выхода (более высокой чувствительностью к по-
верхности), чем в случае Pd3d и Co LMM, зависи-
мости отношений интенсивностей Pd MNN/Pd3d 
и Co LMM/Co2p свидетельствуют о том, что в ре-
зультате прогрева образца PdCo/ВОПГ‑3 до 500°C 
действительно происходит перераспределение 
металлов по глубине частицы: атомы палладия 
сегрегируют на поверхность, а атомы кобальта 
с поверхности диффундируют внутрь, в результате 
чего распределение металлов по глубине стано-
вится более равномерным. Полученные данные 
также подтверждают тот факт, что наблюдаемые 
изменения в атомном отношении Pd/Co, вызван-
ные прогревом образца при 500°C, обусловлены 
преимущественно перераспределением металлов 
по глубине наночастиц с образованием Pd–Co-
сплава, а не изменением их морфологии за счет 
процессов спекания.

Изучение CO-индуцированной сегрегации 
на модельных катализаторах  
Pd–Co/ВОПГ методом РФЭС

Следующая часть работы посвящена исследо-
ванию адсорбционно-индуцированной сегрегации 

на примере приготовленных модельных биметал-
лических катализаторов Pd–Co/ВОПГ. Для этого 
образец PdCo/ВОПГ‑1 прогревался при 500°C 
в вакууме, затем обрабатывался в CO при давлении 
120 мбар при температурах 25—250°C в ячейке 
высокого давления, а затем снова прокаливался 
в вакууме при 500°C (см. Экспериментальную 
часть). После проведения серии обработок образец 
перемещали в туннельный микроскоп для иссле-
дования методом СТМ (рис. 5). После прогрева 
образца PdCo/ВОПГ‑1 в сверхвысоком вакууме 
при 500°C и последующей обработки в CO средний 
размер биметаллических наночастиц составил 
3.9 нм, а плотность их нанесения — 4.11 × 1012 см‑2 
(рис. 5а). Средний размер и плотность нанесения 
наночастиц в исходном образце PdCo/ВОПГ‑1 
(рис. 1б) равнялись 3.5 нм и 4.56 × 1012 см‑2 соот-
ветственно. Прокалка катализатора PdCo/ВОПГ‑1 
при температуре 500°C в вакууме и последую-
щая обработка в СО приводят к небольшому 
увеличению размера и уменьшению плотности 
нанесения наночастиц по сравнению с исход-
ным образцом (после стадии нанесения второго 
металла). Вероятно, незначительное укрупне-
ние частиц происходило на этапе формирова-
ния Pd–Co-сплава в результате прогрева образца 
при температуре 500°C в вакууме. Стоит отме-
тить, что размер частиц в образце PdCo/ВОПГ‑1 

〈d 〉 = 3.9 нм
(а) (б)
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Рис. 5. СТМ-изображение (100 × 100 нм2) и средний размер частиц для биметаллического образца PdCo/ВОПГ‑1 после 
обработки в CO (а), а также гистограммы распределения частиц по размеру для исходного образца PdCo/ВОПГ‑1 и после 
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после обработки в CO существенно меньше, чем 
в PdCo/ВОПГ‑2, прогретом в вакууме при 620°C 
(рис. 1в), где процесс спекания наночастиц про-
исходит выраженным образом. Из представлен-
ных данных можно заключить, что в модельном 
образце PdCo/ВОПГ‑1 биметаллические Pd–Co-
наночастицы устойчивы к спеканию под действи-
ем 120 мбар CO при температурах вплоть до 250°C, 
а изменения, наблюдаемые в РФЭ-спектрах, обу-
словлены преимущественно перераспределением 
металлов по глубине наночастиц, а не изменением 
их морфологии.

Анализ РФЭ-спектров палладия и кобальта 
(рис. 6а, 6б) показал, что в ходе всего эксперимента 
в них не наблюдается никаких дополнительных 
состояний по сравнению с образцом на стадии 
его приготовления (рис. 2). Можно сделать вывод 
о том, что в результате обработки PdCo/ВОПГ‑1 
в CO кобальт и палладий находятся в металличе-
ском состоянии, а формирования новых состо-
яний палладия и/или кобальта не происходит.  

Далее было рассчитано атомное отношение Pd/Co 
в зависимости от условий обработки образца 
(рис. 6в). Обработка PdCo/ВОПГ‑1 в CO в диа-
пазоне температур от 25 до 100°C приводит к не-
значительному увеличению атомного отношения 
Pd/Co, которое затем резко растет при повыше-
нии температуры обработки от 150 до 200°C, что 
свидетельствует об адсорбционно-индуцирован-
ной сегрегации атомов палладия на поверхность 
наночастиц под действием CO, максимальная 
эффективность которой достигается при 200°C. 
Дальнейшее повышение температуры обработки 
до 250°C уменьшает атомное отношение Pd/Co, что 
говорит об обратном перераспределении металлов. 
Последующий прогрев образца PdCo/ВОПГ‑1 в ус-
ловиях СВВ при температуре 500°C ведет к даль-
нейшему снижению атомного отношения Pd/Co 
практически до исходного значения (до обработки 
в CO), что свидетельствует об обратимости се-
грегационных процессов. Таким образом, было 
показано, что адсорбционно-индуцированная 

Рис. 6. РФЭ-спектры Pd3d (а) и Co2p3/2 (б), а также атомные отношения Pd/Co, рассчитанные из этих спектров (в), для об-
разца PdCo/ВОПГ‑1 после прогрева при 500°C в условиях сверхвысокого вакуума, обработки в 120 мбар CO при различных 
температурах и финального прогрева при 500°C в условиях сверхвысокого вакуума.
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сегрегация атомов палладия в биметаллических 
катализаторах Pd–Co/ВОПГ происходит в ре-
зультате их обработки в среде CO, зависимость 
эффективности которой от температуры имеет 
колоколообразный вид с максимумом при 200°C.

ЗАКЛЮЧЕНИЕ
Серия модельных катализаторов Pd–Co/ВОПГ 

с заданными характеристиками была приготовлена 
методом последовательного термического вакуум-
ного напыления металлов и охарактеризована ком-
бинацией методов рентгеновской фотоэлектрон-
ной спектроскопии и сканирующей туннельной 
микроскопии. Показано, что напыление кобальта 
на монометаллическую матрицу Pd/ВОПГ приво-
дит к формированию наночастиц со структурой 
Pdядро–Coоболочка. При последующем прогреве 
в условиях сверхвысокого вакуума в диапазоне 
температур 400—500°C происходит образование 
сплавных Pd–Co-наночастиц с равномерным рас-
пределением металлов. Дальнейшее повышение 
температуры прогрева (>500°C) в вакууме ведет 
к спеканию Pd–Co-наночастиц. Обработка об-
разца Pd–Co/ВОПГ в СО при температурах от 25 
до 250°C приводит к сегрегации атомов палладия 
на поверхность наночастицы, при этом атомное 
отношение Pd/Co имеет колоколообразную зави-
симость от температуры с максимумом при 200°C. 
Установлено, что приготовленные биметалличе-
ские наночастицы Pd–Co проявляют высокую тер-
мическую стабильность при обработке в 120 мбар 
CO вплоть до 250°C.
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Model Bimetallic Pd-Co/HOPG Catalysts: Preparation and XPS/STM Study
M. A. Panafidin1, *, A. V. Bukhtiyarov1, A. O. Martyanov1, A. Yu. Fedorov1,  
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Regularities of formation of bimetallic Pd–Co nanoparticles supported on the highly oriented pyrolytic graphite 
(HOPG) have been studied by a combination of STM and XPS techniques. Cobalt deposition on monometallic 
Pd/HOPG sample was determined to lead to formation of the bimetallic Pdcore–Coshell nanoparticles which 
then transformed into alloyed Pd–Co nanoparticles with homogeneous metal distribution resulting from sam-
ple heating at 400—500°C in ultrahigh vacuum. Heating of the Pd–Co/HOPG catalysts at temperatures higher 
than 500°C in ultrahigh vacuum was revealed to result in sintering of the nanoparticles. Under carbon monoxide 
environment in a range of temperatures 25—250°C, adsorption-induced segregation of palladium atoms on the 
surface of the bimetallic nanoparticles was shown to take place, with latter having volcano-shape temperature 
dependence with a maximum at 200°C. It was established that bimetallic Pd–Co nanoparticles in the model 
catalysts were stable against sintering up to 250°C in CO atmosphere.

Keywords: bimetallic catalysts, HOPG, XPS, adsorption-induced segregation, STM
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