RAS Chemistry & Material ScienceКинетика и катализ Kinetics and Catalysis

  • ISSN (Print) 0453-8811
  • ISSN (Online) 3034-5413

Application of a three-component model to describe non-isothermal pyrolysis of rice husk

PII
S30345413S0453881125010049-1
DOI
10.7868/S3034541325010049
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 66 / Issue number 1
Pages
39-47
Abstract
The experimental data on rice husk pyrolysis obtained by thermogravimetric method in non-isothermal mode were processed based on three-component kinetic model. According to the model, biomass is represented by the sum of three components — hemicellulose, cellulose and lignin. Pyrolysis of each component proceeds by independent irreversible first-order reaction. To determine the model parameters, the experimental data processing technique based on the difference in temperature ranges of hemicellulose, cellulose and lignin pyrolysis, improved in this work, was used. The activation energies of rice husk component pyrolysis were as follows: 21.3 kJ/mol for lignin, 110 kJ/mol for cellulose, and 38 kJ/mol for hemicellulose. The discrepancy between the experimental and calculated data on the sample mass was less than 1%. For comparison, the experimental data were processed using the one-component Ginstling–Brownestein model using the Coats–Redfern method.
Keywords
неизотермический пиролиз рисовая шелуха трехкомпонентная кинетическая модель методика обработки экспериментальных данных<sub></sub>
Date of publication
21.11.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Гребенкина А.В., Шишова Н.В., Литвинова Т.А., Косулина Т.П. // Научные труды КубГТУ. 2017. № 7. С. 177.
  2. 2. Demirbas A., Arin D. // Energy Sources. 2002. V. 5. P. 471.
  3. 3. Коробочкин В.В., Нгуен М.Х., Усольцева Н.В., Нгуен В.Т. // Известия Томского политехнического университета. Инжиниринг георесурсов. 2017. Т. 328. № 5. C. 6.
  4. 4. Di Blasi C. // Prog. Energy Combust. Sci. 2008. V. 34. P. 47.
  5. 5. Sharma A., Pareek V., Zhang D. // Renew. Sustain. Energy Rev. 2015. V. 50. P. 1081.
  6. 6. Papari S., Hawboldt K. // Renew. Sustain.e Energy Rev. 2015. V. 52. P. 1580.
  7. 7. Caballero J.A., Conesa J.A., Font R., Marcilla A. // J. Anal. Appl. Pyrol. 1997. V. 42. P. 159.
  8. 8. Orfao J.J.M., Antunes F.J.A., Figueiredo J.L. // Fuel. 1999. V. 78. P. 349.
  9. 9. Helsen L., Van den Bulck E. // J. Anal. Appl. Pyrol. 2000. V. 53. P. 51.
  10. 10. Sorum L., Gronli M.G., Hustad J.E. // Fuel. 2001. V. 80. P. 1217.
  11. 11. Garsia-Perez M., Chaala A., Yang J., Roy C. // Fuel. 2001. V. 80. P. 1245.
  12. 12. Gronli M.G., Varhegyi G., Di Blasi C. // Ind. Eng. Chem. Res. 2002. V. 41. P. 4201.
  13. 13. Vamvuka D., Karakas E., Kastanaki E., Grammelis P. // Fuel. 2003. V. 82. P. 1949.
  14. 14. Заварухин С.Г., Яковлев В.А. // Кинетика и катализ. 2021. Т. 62. № 4. С. 647.
  15. 15. Teng H., Lin H.C., Ho J.A. // Ind. Eng. Chem. Res. 1997. V. 36. P. 3974.
  16. 16. Teng H., Wei Y.C. // Ind. Eng. Chem. Res. 1998. V. 37. P. 3806.
  17. 17. Radmanesh R., Courbariaux Y., Chaouki J., Guy C. // Fuel. 2006. V. 85. P. 1211.
  18. 18. Vlaev L.T., Markovska I.G., Lyubchev L.A. // Thermochim. Acta. 2003. V. 406. P. 1.
  19. 19. Guo J., Lua A.C. // J. Therm. Anal. Calorim. 2000. V. 59. P. 763.
  20. 20. Rao T.R., Sharma A. // Energy. 1998. V. 23. P. 973.
  21. 21. Sharma A., Rao T.R. // Biores. Technol. 1999. V. 67. P. 53.
  22. 22. Lim A.C.R., Chin B.L.F., Jawad Z.A., Hii K.L. // Proc. Eng. 2016. V. 148. P. 1247.
  23. 23. Табакаев Р.Б., Алтынбаева Д.Б., Ибраева К.Т., Заворин А.С. // Известия Томского политехнического университета. Инжиниринг георесурсов. 2020. Т. 331. № 12. С. 117.
  24. 24. Фетисова О.Ю., Микова Н.М., Таран О.П. // Кинетика и катализ. 2020. Т. 61. № 6. С. 804.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library