RAS Chemistry & Material ScienceКинетика и катализ Kinetics and Catalysis

  • ISSN (Print) 0453-8811
  • ISSN (Online) 3034-5413

The Interaction of Hydrazine Monohydrate with the Surface of Metal-Containing Catalysts

PII
S30345413S0453881125020029-1
DOI
10.7868/S3034541325020029
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 66 / Issue number 2
Pages
80-90
Abstract
The interaction of hydrazine monohydrate with nickel on various carriers has been investigated using a range of physical and chemical methods. Hydrazine monohydrate adsorbs on catalysts, both active and inactive, in the infrared region of the spectrum. The location of the particles of adsorbed hydrazine monohydrate is on the carrier. There was no correlation found between the spectral features on several of the catalysts studied and their catalytic activity in hydrogen formation. The main transformation reactions occur in the metallic phase of the supported catalysts. It was found that, due to the reaction energy, the size and structure of the clusters were reduced and rearranged to create centers suitable for the effective course of intramolecular dehydrogenation of hydrazine. At the same time, this process was most effective on smaller clusters, possibly because a stronger Me-H bond was formed on them. Adsorption of hydrazine monohydrate through hydrogen atoms was possible on these clusters. These conditions ensured the predominant formation of hydrogen at low temperatures. An increase in temperature contributed to the course of a competing reaction of ammonia formation, associated with the breaking of the N-N bond in the adsorption complex. As result, the formation of NH complexes is taking place, and then ammonia.
Keywords
превращение моногидрата гидразина водород промежуточные соединения молекулярная спектроскопия
Date of publication
28.12.2024
Year of publication
2024
Number of purchasers
0
Views
18

References

  1. 1. Hydrogen and other Alternative Fuels for Air and Ground Transportation. Ed. Pohl H.W. UK: Wiley, 1995. 206 p.
  2. 2. Wincewicz K.C., Cooper J.S. // J. Power Sources. 2005. V. 140. P. 280. https://doi.org/10.1016/j.jpow-sour.2004.08.032
  3. 3. Каленчук А.Н., Богдан В.И. // Кинетика и катализ. 2022. Т. 63. № 4. C. 516. https://doi.org/10.1134/s002315842204005x
  4. 4. Al-Thubaiti K.S, Khan Z. // Int. J. Hydrogen Energy. 2020. V. 45. P. 13960. https://doi.org/10.1016/j.ijhydene.2020.03.093
  5. 5. Motta D., Barlocco I., Bellomi S., Villa A., Dimitratos N. // Nanomaterials. 2021. V. 11. P. 1340. https://dx.doi.org/10.3390/nano11051340
  6. 6. Adamou P., Bellomi S., Hafeez S., Harkou E., Al-Salem S.M., Villa A., Dimitratos N., Manos G., Constantinou A. // Catal. Today. 2023. V. 423. 114022. https://doi.org/10.1016/j.cattod.2023.01.029
  7. 7. Adamou P., Bellomi S., Harkou E., Chen X., Delgado J.J., Dimitratos N., Manos G., Villa A., Constantinou A. // Chem. Eng. J. 2024. V. 493. 1527152024. https://doi.org/10.1016/j.ccj.2024.152715
  8. 8. Akbar Z.A., Situmorang S.V., Yati I., Yunari R.T., Ridwan S.N. // Int. J. Hydrogen Energy. 2024. V. 57. P. 1506. https://doi.org/10.1016/j.ijhydene.2024.01.068
  9. 9. Богданова Е.А., Пономарев И.Ю., Населкин А.В. // Кинетика и каталия. 2022. T. 63. № 3. C. 279. https://doi.org/10.31857/S045388112030042
  10. 10. Матышак В.А., Сильченкова О.Н. // Кинетика и каталия. 2022. T. 63. № 4. C. 405. https://doi.org/10.1134/s0023158422040073
  11. 11. Dai H., Zhong Y., Wang P. // Prog. Nat. Sci. Mater. 2017. V. 27. P. 121. https://doi.org/10.3390/catal10080930
  12. 12. Du X., Liu C., Du C., Cai P., Cheng G., Lu W. // Nano Res. J. 2017. V. 10. № 8. P. 2856. https://doi.org/10.1007/s12274-017-1494-6
  13. 13. Shi Q., Qiu Yu.-P., Dai H., Wang P. // J. Alloys Compd. 2019. V. 787. P. 1187. https://doi.org/10.1016/j.jall-com.2019.01.378
  14. 14. Singh S.K., Iizuka Y., Xu Q. // Int. J. Hydrogen Energy. 2011. V. 36. № 18. P. 11794. https://doi.org/10.1016/j.ijhydene.2011.06.069
  15. 15. Qiu Y.-P., Chen M.-H., Qin S.-H., Yang Z.-Q., Wang P. // Int. J. Hydrogen Energy. 2024. V. 50 (D). P. 3181. https://doi.org/10.1016/j.ijhydene.2023.09.244
  16. 16. Качала В.В., Хемчян Л.Л., Кашин А.С., Орлов Н.В., Грачев А.А., Залесский С.С., Ананников В.П. // Успехи химии. 2013. T. 82. C. 648. https://doi.org/10.1070/RC201308207ABEH004413
  17. 17. Matyshak V.A., Krylov O.V. // Catal. Today. 1995. V. 25. P. 1. https://doi.org/10.1016/0920-5861 (95)00067-P
  18. 18. Ramis G., Li Y., Busca G. // Catal. Today. 1996. V. 28. P. 373. https://doi.org/10.1016/S0920-5861 (96)00050-8
  19. 19. Amores J.M.G., Escribano VS., Ramis G., Busca G. // Appl. Catal. B: Environ. 1997. V. 13. № I. P. 45. https://doi.org/10.1016/S0926-3373 (96)00092-6
  20. 20. Chuang Ch.-Ch., Shiu J.-Sh., Lin J.-L. // Phys. Chem. Chem. Phys. 2000. V. 2. P. 2629. https://doi.org/10.1039/B001389G
  21. 21. Матышак В.А., Сильченкова О.Н., Ильичев А.Н., Быховский М.Я., Mнацаканян Р.А. // Kintertika in kara-nus. 2023. T. 64. № 6. C. 773. https://doi.org/10.31857/S0453881123060114
  22. 22. Lieske H., Lietz G., Sprindler H., Volter J. // J. Catal. 1983. V. 81. P. 8. https://doi.org/10.1016/0021-9517 (83)90142-2
  23. 23. Alberas D.J., Kiss J., Liu Z.-M., White J.M. // Surf. Sci. 1992. V. 278. P. 51. https://doi.org/10.1016/0039-6028 (92)90583-R
  24. 24. Zhang P.-X., Wang Y.-G., Huang Y.-Q., Zhang T., Wu G.-S., Li J. // Catal. Today. 2011. V. 165. P. 80. https://doi.org/10.1016/j.cattod.2011.01.012
  25. 25. Agusta M.K., David M., Nakanishi H., Kasai H. // Surf. Sci. 2010. V. 604. P. 245. https://doi.org/10.1016/j.susc.2009.11.012
  26. 26. Bychkov V.Yu., Tyulenin Y.P., Korchak V.N., Aptekar E.L. // Appl. Catal. A: Gen. 2006. V. 304. P. 21. https://doi.org/10.1016/j.apcata.2006.02.023
  27. 27. Bychkov V.Yu., Tyulenin Yu.P., Slinko M.M., Shashkin D.P., Korchak V.N. // J. Catal. 2009. V. 267. № 2. P. 181. https://doi.org/10.1016/j.jcat.2009.08.010
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library