ОХНМКинетика и катализ Kinetics and Catalysis

  • ISSN (Print) 0453-8811
  • ISSN (Online) 3034-5413

ВЗАИМОДЕЙСТВИЕ МОНОГИДРАТА ГИДРАЗИНА С ПОВЕРХНОСТЬЮ МЕТАЛЛСОДЕРЖАЩИХ КАТАЛИЗАТОРОВ

Код статьи
S30345413S0453881125020029-1
DOI
10.7868/S3034541325020029
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 66 / Номер выпуска 2
Страницы
80-90
Аннотация
С помощью комплекса физико-химических методов изучено взаимодействие моногидрата гидразина с никелем на разных носителях. Моногидрат гидразина адсорбируется на катализаторах как в активной, так и в неактивной в ИК-области формах. Местом локализации частиц адсорбированного моногидрата гидразина является носитель. Корреляции между спектральными проявлениями для ряда исследуемых катализаторов и их каталитической активностью в образовании водорода не обнаружено. Активированные за счет адсорбции на носителе поверхностные комплексы гидразина диффундируют на кластеры, где проходят основные реакции образования водорода. Обнаружено, что за счет энергии реакции происходит уменьшение размера и, по-видимому, перестройка структуры кластеров с появлением центров, подходящих для эффективного протекания внутримолекулярного дегидрирования гидразина. Наиболее эффективно процесс проходит на кластерах меньшего размера, возможно, за счет того, что на них возникает более прочная связь Ме-Н. На кластерах возможна адсорбция моногидрата гидразина через атомы водорода. Эти обстоятельства обеспечивают преимущественное образование водорода при низкой температуре. Повышение температуры способствует протеканию конкурентной реакции образования аммиака, связанной с разрывом связи N-N в адсорбционном комплексе, что приводит к возникновению комплексов NH и затем аммиака.
Ключевые слова
превращение моногидрата гидразина водород промежуточные соединения молекулярная спектроскопия
Дата публикации
28.12.2024
Год выхода
2024
Всего подписок
0
Всего просмотров
19

Библиография

  1. 1. Hydrogen and other Alternative Fuels for Air and Ground Transportation. Ed. Pohl H.W. UK: Wiley, 1995. 206 p.
  2. 2. Wincewicz K.C., Cooper J.S. // J. Power Sources. 2005. V. 140. P. 280. https://doi.org/10.1016/j.jpow-sour.2004.08.032
  3. 3. Каленчук А.Н., Богдан В.И. // Кинетика и катализ. 2022. Т. 63. № 4. C. 516. https://doi.org/10.1134/s002315842204005x
  4. 4. Al-Thubaiti K.S, Khan Z. // Int. J. Hydrogen Energy. 2020. V. 45. P. 13960. https://doi.org/10.1016/j.ijhydene.2020.03.093
  5. 5. Motta D., Barlocco I., Bellomi S., Villa A., Dimitratos N. // Nanomaterials. 2021. V. 11. P. 1340. https://dx.doi.org/10.3390/nano11051340
  6. 6. Adamou P., Bellomi S., Hafeez S., Harkou E., Al-Salem S.M., Villa A., Dimitratos N., Manos G., Constantinou A. // Catal. Today. 2023. V. 423. 114022. https://doi.org/10.1016/j.cattod.2023.01.029
  7. 7. Adamou P., Bellomi S., Harkou E., Chen X., Delgado J.J., Dimitratos N., Manos G., Villa A., Constantinou A. // Chem. Eng. J. 2024. V. 493. 1527152024. https://doi.org/10.1016/j.ccj.2024.152715
  8. 8. Akbar Z.A., Situmorang S.V., Yati I., Yunari R.T., Ridwan S.N. // Int. J. Hydrogen Energy. 2024. V. 57. P. 1506. https://doi.org/10.1016/j.ijhydene.2024.01.068
  9. 9. Богданова Е.А., Пономарев И.Ю., Населкин А.В. // Кинетика и каталия. 2022. T. 63. № 3. C. 279. https://doi.org/10.31857/S045388112030042
  10. 10. Матышак В.А., Сильченкова О.Н. // Кинетика и каталия. 2022. T. 63. № 4. C. 405. https://doi.org/10.1134/s0023158422040073
  11. 11. Dai H., Zhong Y., Wang P. // Prog. Nat. Sci. Mater. 2017. V. 27. P. 121. https://doi.org/10.3390/catal10080930
  12. 12. Du X., Liu C., Du C., Cai P., Cheng G., Lu W. // Nano Res. J. 2017. V. 10. № 8. P. 2856. https://doi.org/10.1007/s12274-017-1494-6
  13. 13. Shi Q., Qiu Yu.-P., Dai H., Wang P. // J. Alloys Compd. 2019. V. 787. P. 1187. https://doi.org/10.1016/j.jall-com.2019.01.378
  14. 14. Singh S.K., Iizuka Y., Xu Q. // Int. J. Hydrogen Energy. 2011. V. 36. № 18. P. 11794. https://doi.org/10.1016/j.ijhydene.2011.06.069
  15. 15. Qiu Y.-P., Chen M.-H., Qin S.-H., Yang Z.-Q., Wang P. // Int. J. Hydrogen Energy. 2024. V. 50 (D). P. 3181. https://doi.org/10.1016/j.ijhydene.2023.09.244
  16. 16. Качала В.В., Хемчян Л.Л., Кашин А.С., Орлов Н.В., Грачев А.А., Залесский С.С., Ананников В.П. // Успехи химии. 2013. T. 82. C. 648. https://doi.org/10.1070/RC201308207ABEH004413
  17. 17. Matyshak V.A., Krylov O.V. // Catal. Today. 1995. V. 25. P. 1. https://doi.org/10.1016/0920-5861 (95)00067-P
  18. 18. Ramis G., Li Y., Busca G. // Catal. Today. 1996. V. 28. P. 373. https://doi.org/10.1016/S0920-5861 (96)00050-8
  19. 19. Amores J.M.G., Escribano VS., Ramis G., Busca G. // Appl. Catal. B: Environ. 1997. V. 13. № I. P. 45. https://doi.org/10.1016/S0926-3373 (96)00092-6
  20. 20. Chuang Ch.-Ch., Shiu J.-Sh., Lin J.-L. // Phys. Chem. Chem. Phys. 2000. V. 2. P. 2629. https://doi.org/10.1039/B001389G
  21. 21. Матышак В.А., Сильченкова О.Н., Ильичев А.Н., Быховский М.Я., Mнацаканян Р.А. // Kintertika in kara-nus. 2023. T. 64. № 6. C. 773. https://doi.org/10.31857/S0453881123060114
  22. 22. Lieske H., Lietz G., Sprindler H., Volter J. // J. Catal. 1983. V. 81. P. 8. https://doi.org/10.1016/0021-9517 (83)90142-2
  23. 23. Alberas D.J., Kiss J., Liu Z.-M., White J.M. // Surf. Sci. 1992. V. 278. P. 51. https://doi.org/10.1016/0039-6028 (92)90583-R
  24. 24. Zhang P.-X., Wang Y.-G., Huang Y.-Q., Zhang T., Wu G.-S., Li J. // Catal. Today. 2011. V. 165. P. 80. https://doi.org/10.1016/j.cattod.2011.01.012
  25. 25. Agusta M.K., David M., Nakanishi H., Kasai H. // Surf. Sci. 2010. V. 604. P. 245. https://doi.org/10.1016/j.susc.2009.11.012
  26. 26. Bychkov V.Yu., Tyulenin Y.P., Korchak V.N., Aptekar E.L. // Appl. Catal. A: Gen. 2006. V. 304. P. 21. https://doi.org/10.1016/j.apcata.2006.02.023
  27. 27. Bychkov V.Yu., Tyulenin Yu.P., Slinko M.M., Shashkin D.P., Korchak V.N. // J. Catal. 2009. V. 267. № 2. P. 181. https://doi.org/10.1016/j.jcat.2009.08.010
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека