RAS Chemistry & Material ScienceКинетика и катализ Kinetics and Catalysis

  • ISSN (Print) 0453-8811
  • ISSN (Online) 3034-5413

Active and Stable Ni/AlO-(Zr + Ce)O Catalyst for Syngas Production via Glycerol Dry Reforming

PII
S30345413S0453881125020068-1
DOI
10.7868/S3034541325020068
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 66 / Issue number 2
Pages
126-135
Abstract
A nickel-based catalyst supported on alumina-zirconia-ceria oxides was investigated to evaluate its performance in the dry reforming of glycerol with CO. The reaction was carried out at 700°C, atmospheric pressure and a glycerol/CO molar ratio of 1. The catalyst showed stable operation for 7 h and achieved glycerol and CO conversions of 60 and 47%, respectively, with H and CO yields of 48 and 58%. Thermogravimetric analysis revealed the presence of carbon deposits, which, however, did not result in a significant loss of activity. These results highlight the potential of the synthesized catalyst for glycerol conversion for the production of syngas and hydrogen from renewable feedstock.
Keywords
углекислотная конверсия глицерина возобновляемая энергетика никелевые катализаторы наночастицы стабильность ферромагнитный резонанс
Date of publication
11.04.2025
Year of publication
2025
Number of purchasers
0
Views
26

References

  1. 1. Kolesárová N., Hutňan M., Bodík I., Špalková V. // BioMed Res. Int. 2011. V. 2011. 126798. https://doi.org/10.1155/2011/126798
  2. 2. Cheng C.K., Lim R.H., Ubil A., Chin S.Y., Gimbun J. // Adv. Mater. Phys. Chem. 2012. V. 2. 24B043. https://doi.org/10.4236/ampc.2012.24B043
  3. 3. Schwengber C.A., Alves H.J., Schaffner R.A., Alves da Silva F., Sequinel R., Rossato Bach V., Ferracin R.J. // Renew. Sustain. Energy Rev. 2016. V. 58. P. 259. https://doi.org/10.1016/j.rser.2015.12.279
  4. 4. Sadykov V.A., Simonov M.N., Belpalko Y.N., Bobrova L.N., Eremeev N.F., Arapova M.V., Smal' E.A., Mezeniseva N.V., Pavlova S.N. // Kinet. Catal. 2019. Vol. 60. № 5. P. 582. https://doi.org/10.1134/S0023158419050082
  5. 5. Sabri F., Idem R., Ibrahim H. // Ind. Eng. Chem. Res. 2018. V. 57. P. 2486. https://doi.org/10.1021/acsiecr.7b04582
  6. 6. Pairojpiriyakul T., Kiatkittipong W., Assabumrungrat S., Croiset E. // Int. J. Hydrogen Energy. 2014. V. 39. P. 159. https://doi.org/10.1016/j.ijhydene.2013.09.148
  7. 7. Mohd Arif N.N., Zainal Abidin S., Osazawa O.U., Vo D.-V.N., Azizan M.T. // Int. J. Hydrogen Energy. 2019. V. 44. P. 20857. https://doi.org/10.1016/j.ijhydene.2018.06.084
  8. 8. Kamonsuangkasem K., Therdthianwong S., Therdthianwong A. // Fuel Process. Technol. 2013. V. 106. P. 695. https://doi.org/10.1016/j.fuproc.2012.10.003
  9. 9. Iriondo A., Cambra J.F., Barrio V.L., Guenez M.B., Arias P.L., Sanchez-Sanchez M.C., Navarro R.M., Fierro J.L.G. // Appl. Catal. B: Environ. 2011. V. 106. P. 83. https://doi.org/10.1016/j.apcatb.2011.05.009
  10. 10. Tamošiūnas A., Gimžauskaitė D., Aikas M., Uscila R., Zakarauskas K.// Int. J. Hydrogen Energy. 2022. V. 47. P. 12219. https://doi.org/10.1016/j.ijhydene.2021.06.203
  11. 11. Sahraei O.A.Z., Larachi F., Abatzoglou N., Iluta M.C. // Appl. Catal. B: Environ. 2017. V. 219. P. 183. https://doi.org/10.1016/j.apcatb.2017.07.039
  12. 12. Lee H.C., Siew K.W., Khan M.R., Chin S.Y., Cheng C.K. // J. Energy Chem. 2014. V. 23. P. 645. https://doi.org/10.1016/S2095-4956 (14)60196-0
  13. 13. Siew K.W., Lee H.C., Gimbun J., Cheng C.K. // J. Energy Chem. 2014. V. 23. P. 15. https://doi.org/10.1016/S2095-4956 (14)60112-1
  14. 14. Siew K.W., Lee H.C., Gimbun J., Chin S.Y., Khan M.R., Taufiq-Yap Y.H., Cheng C.K. // Renew. Energy. 2015. V. 74. P. 441. https://doi.org/10.1016/j.renene.2014.08.048
  15. 15. Wang X., Li M., Wang M., Wang H., Li S., Wang S., Ma X. // Fuel. 2009. V. 88. P. 2148. https://doi.org/10.1016/j.fuel.2009.01.015
  16. 16. Yu J., Odriozola J.A., Reina T.R. // Catalysts. 2019. V. 9. P. 1015. https://doi.org/10.3390/catal9121015
  17. 17. Bychkov V.Y., Tulenin Y.P., Goensberg A.Y., Korchak V.N. // Kinet. Catal. 2021. V. 62. № 1. P. 181. https://doi.org/10.1134/S0023158420100018
  18. 18. Bychkov V.Y., Tyulevin Y.P., Korchak V.N. // Kinet. Catal. 2003. V. 44. P. 353. https://doi.org/10.1023/A:1024494918755
  19. 19. Roslan N.A., Zainal Abidin S., Osazawa O.U., Chin S.Y., Taufiq-Yap Y.H. // Int. J. Hydrogen Energy. 2021. V. 46. P. 30959. https://doi.org/10.1016/j.ijhydene.2021.03.162
  20. 20. Tavanarad M., Meshkani F., Rezaei M. // J. CO Util. 2018. V. 24. P. 298. https://doi.org/10.1016/j.jcou.2018.01.009
  21. 21. Fionov Y., Khlusova K., Chuklina S., Mushtakov A., Fionov A., Zhukov D., Averin A., Zhukova A. // Fuel. 2024. V. 376. 132685. https://doi.org/10.1016/j.fuel.2024.132685
  22. 22. Golestani Kashani M., Ramezani Y., Meshkani F. // Mater. Today Commun. 2024. V. 40. 109999. https://doi.org/10.1016/j.mtcomm.2024.109999
  23. 23. Memarian Z., Meshkani F. // Fuel. 2025. In press. https://doi.org/10.1016/j.fuel.2025.134902
  24. 24. Huang L., Li D., Tian D., Jiang L., Li Z., Wang H., Li K. // Energy Fuel. 2022. V. 36. № 10. P. 5102. https://doi.org/10.1021/acs.energyfuels.2c00523
  25. 25. Zhukova A.I., Chuklina S.G., Maslenkova S.A. // Catal. Today. 2021. V. 379. P. 159. https://doi.org/10.1016/j.cattod.2021.02.015
  26. 26. Zhukova A., Fionov Y., Semenova S., Khajbullin S., Chuklina S., Maslakov K., Zhukov D., Isaikina O., Mushtakov A., Fionov A. // J. Phys. Chem. C. 2024. V. 128. № 47. P. 20177. https://doi.org/10.1021/acs.jpcc.4c07213
  27. 27. Salehi S., Alavi S.M., Rezaei M., Akbari E., Varbar M. // J. CO Util. 2024. V. 81. 102737. https://doi.org/10.1016/j.jcou.2024.102737
  28. 28. Harun N., Gimbun J., Azizan M.T., Zainal Abidin S. // Bull. Chem. React. Eng. Catal. 2016. V. 11. № 2. P. 220. https://doi.org/10.9767/bcrec.11.2.553.220-229
  29. 29. Golestani Kashani M., Ramezani Y., Meshkani F. // Mater. Res. Bull. 2025. V. 182. 113135. https://doi.org/10.1016/j.materresbull.2024.113135
  30. 30. Roslan N.A., Zainal Abidin S., Osazawa O.U., Chin S.Y., Taufiq-Yap Y.H. // Fuel. 2022. V. 314. 123050. https://doi.org/10.1016/j.fuel.2021.123050
  31. 31. Lyu Y., Jocz J., Xu R., Stavitski E., Sievers C. // ACS Catal. 2020. V. 10. № 19. P. 11235. https://doi.org/10.1021/acscatal.0c02426
  32. 32. Huang Y., Li X., Zhang Q., Vinokurov V.A., Huang W. // Fuel. 2022. V. 310. 122449. https://doi.org/10.1016/j.fuel.2021.122449
  33. 33. Wang Z., Cao X.-M., Zhu J., Hu P. // J. Catal. 2014. V. 311. P. 469. https://doi.org/10.1016/j.jcat.2013.12.015
  34. 34. Harun N., Gimbun J., Azizan M.T., Zainal Abidin S. // Bull. Chem. React. Eng. Catal. 2016. V. 11. P. 220. https://doi.org/10.9767/bcrec.11.2.553.220-229
  35. 35. Donphai W., Faungnawakij K., Chareonpanich M., Limtrakul J. // Appl. Catal. A: Gen. 2014. V. 475. P. 16. https://doi.org/10.1016/j.apcata.2014.01.014
  36. 36. Zhukova A., Fionov Y., Chuklina S., Mikhalenko I., Fionov A.V., Isaikina O., Zhukov D.Y., de Lima A.M. // Energy Fuel. 2024. V. 38. P. 482. https://doi.org/10.1021/acs.energyfuels.3c03421
  37. 37. Zhang G., Wang Y., Li X., Bai Y., Zheng L., Wu L., Han X. // Ind. Eng. Chem. Res. 2018. V. 57. № 50. P. 17076. https://doi.org/10.1021/acs.iecr.8b03612
  38. 38. Weiss B.P., Kim S.S., Kirschvink J.L., Kopp R.E., Santaran M., Kobayashi A., Komelli A. // Earth Planet. Sci. Lett. 2004. V. 224. P. 73. https://doi.org/10.1016/j.epsl.2004.04.024
  39. 39. Manukyan A.S., Mirzakhanyan A.A., Badalyan G.R., Shirinyan G.H., Fedorenko A.G., Lianguzov N.V., Yuzyuk Y.I., Bugaev L.A., Sharoyan E.G. // J. Nanopart. Res. 2012. V. 14. P. 982. https://doi.org/10.1007/s11051-012-0982-6
  40. 40. Zhou L., Li L., Wei N., Li J., Basset J.-M. // ChemCatChem. 2015. V. 7. № 16. P. 2508. https://doi.org/10.1002/cctc.201500379
  41. 41. Pegios N., Bliznuk V., Theofanidis S.A., Galviia V.V., Marin G.B., Palkovits R., Simeonov K. // Appl. Surf. Sci. 2018. V. 452. P. 239. https://doi.org/10.1016/j.apsusc.2018.04.229
  42. 42. Bannov A.G., Popov M.V., Kurmashov P.B. // J. Therm. Anal. Calorim. 2020. V. 142. P. 349. https://doi.org/10.1007/s10973-020-09647-2
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library