- Код статьи
- S30345413S0453881125020075-1
- DOI
- 10.7868/S3034541325020075
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 66 / Номер выпуска 2
- Страницы
- 136-146
- Аннотация
- Методом рентгеновской фотоэлектронной спектроскопии (РФЭС) с привлечением спектроскопии ядерного магнитного резонанса (ЯМР) исследованы особенности закрепления комплекса [Ir(COD)Cl] на поверхности модифицированного силикагеля L–SiO (где L – NCH–CH–CH–, N(CH)–CH–CH–CH–, NH–CH–) в зависимости от природы линкера, а также условий приготовления систем. Каталитическую активность тестировали в реакциях газофазного селективного гидрирования пропилена параводородом (n-H). По данным РФЭС во всех случаях удается приготовить одноцентровый закрепленный иридиевый катализатор. Анализ спектров РФЭС указывает на возможность закрепления комплекса через один из атомов Ir с сохранением димера. Было показано, что при разной длительности взаимодействия раствора комплекса иридия с модифицированным NH–CH– силикателем закрепляется примерно одинаковое количество комплекса, но характер координации меняется. Для образца, полученного при длительном взаимодействии раствора комплекса с модифицированным носителем (24 ч), наблюдалось высокое усиление сигнала ЯМР при 60°С, в то время в случае образца, приготовленного при непродолжительном взаимодействии (1 ч), сигнал усиливался при повышении температуры до 80°С.
- Ключевые слова
- рентгеновская фотоэлектронная спектроскопия металлоорганический комплекс иридия одноцентровый закрепленный катализатор селективное гидрирование парное присоединение
- Дата публикации
- 09.04.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 19
Библиография
- 1. The Handbook of Homogeneous Hydrogenation. J.G. de Vries, C.J. Elsevier, Eds, Wiley-VCH: Weinheim, 2007.
- 2. Skovpin I.V., Kovtunova L.M., Nartova A.V., Kvon R.I., Bukhtiyarov V.I., Koptyug I.V. // Catal. Sci. Technol. 2022. V. 12. P. 3247. https://doi.org/10.1039/D1CY022581
- 3. Encyclopedia of Reagents for Organic Synthesis. Wercott S.A., Parthasaraty S., Gilder P.G., Colacot T.J. Eds., John Wiley & Sons: Hoboken, NJ, 2018.
- 4. Hesp K.D., Stradiotto M. // Org. Lett. 2009. V. 11. P. 1449. https://doi.org/10.1021/ol900174f
- 5. Motokura K., Ding S., Usui K., Kong Y. // ACS Catal. 2021. V. 11. P. 11985. https://doi.org/10.1021/acscatal.1c03426
- 6. Skovpin I.V., Sviyazov S.V., Burueva D.B., Kovtunova L.M., Nartova A.V., Kvon R.I., Bukhtiyarov V.I., Koptyug I.V // Dokl. Phys. Chem. 2023. V. 512. P. 149. https://doi.org/10.1134/S0012501623600237
- 7. Lazaro G., Iglesias M., Fernandez-Alvarez F.J., Sanz Miguel P.J., Perez-Torrente J.J., Oro L.A. // ChemCatChem. 2013. V. 5. P. 1133. https://doi.org/10.1002/cctc.201200309
- 8. Zhang S., Wang H., Li M., Han J., Liu X., Gong J. // Chem. Sci. 2017. V. 8. P. 4489. https://doi.org/10.1039/c7sc00713b
- 9. Esfandiari M., Havaei G., Zahiri S., Mohammadnezhad G. // Coord. Chem. Rev. 2022. V. 472. 214778. https://doi.org/10.1016/j.ccr.2022.214778
- 10. Nartova A.V., Kvon R.I., Kovtunova L.M., Skovpin I.V., Koptyug I.V., Bukhtiyarov V.I. // Int. J. Mol. Sci. 2023. V. 24. P. 15643. https://doi.org/10.3390/ijms242115643
- 11. Skovpin I.V., Burueva D.B., Kovtunova L.M., Nartova A.V., Kvon R.I., Bukhtiyarov V.I., Koptyug I.V. // Appl. Magn. Reson. 2024. V. 55. P. 1275. https://doi.org/10.1007/s00723-024-01660-0
- 12. Buljubasich L., Franzoni M.B., Münnemann K. // Top. Curr. Chem. 2013. V. 338. P. 33. https://doi.org/10.1007/128_2013_420
- 13. Gutmann T., Ratajczyk T., Xu Y., Breitzke H., Grunberg A., Dillenberger S., Bommerich U., Trantzsche T., Bernarding J., Buntkowsky G. // Solid State NMR. 2010. V. 38. P. 90. https://doi.org/10.1016/j.ssnmr.2011.03.001
- 14. Duckett S.B., Mewis R.E. // Acc. Chem. Res. 2012. V. 45. P. 1247. https://doi.org/10.1016/S0079-6565 (98)00027-2
- 15. Bowers C.R., Weitekamp D.P. // J. Am. Chem. Soc. 1987. V. 109. P. 5541. https://doi.org/10.1021/ja00252a049
- 16. Bouchard L.-S., Kovtunov K.V., Burt S.R., Anwar M.S., Koptyug I.V., Sagdeev R.Z., Pines A. // Angew. Chem. Int. Ed. Engl. 2007. V. 46. P. 4064. https://doi.org/10.1002/anie.200700830
- 17. Mondloch J.E, Wang Q., Frenkel A.I., Finke R.G. // J. Am. Chem. Soc. 2010. V. 132. P. 9701. https://doi.org/10.1021/ja1030062
- 18. Moulder J.F., Stckle W.F., Sobol P.E., Bomben K.D. Handbook of X-ray Photoelectron Spectroscopy. J. Chastain Eds. Eden Prairie. MN: Perkin-Elmer, 1992.
- 19. Surface Analysis by Auger and X-ray Photoelectron Spectroscopy. D. Briggs, J.T. Grant, Eds. IM Publications and Surfacespectra Limited, Cromwell Press, Trowbridge, UK, 2003.
- 20. Fernando N.K., Cairns A.B., Murray C.A., Thompson A.L., Dickerson J.L., Garman E.F., Ahmed N., Ratcliff L.E., Regoutz A. // J. Phys. Chem. 2021. V. 125. P. 7473. https://doi.org/10.1021/acs.jpca.1c05759
- 21. Using XPS PEAK Version 4.1. http://sun.phy.cuhk.edu.hk/~surface/XPSPEAK/XPSPEAKusersguide.doc [Electronic resource]
- 22. Lea A.S., Swanson K.R., Haack J.N., Castle J.E., Tougaard S., Baer D.R. // Surf. Interf. Anal. 2010. V. 42. P. 1061. https://doi.org/10.1002/sia.3304
- 23. Nartova A.V., Kvon R.I., Kovtunova L.M., Dmitrachkov A.M., Skovpin I.V., Bukhtiyarov V.I. // Kinet. Catal. 2024. V. 65. № 2. P. 202. https://doi.org/10.1134/s002315842361213
- 24. Groom C.R., Bruno J.J., Lightfoot M.P., Ward S.C. // Acta Cryst. 2016. V. 72. P. 171. https://doi.org/10.1107/S2052520616003954