RAS Chemistry & Material ScienceКинетика и катализ Kinetics and Catalysis

  • ISSN (Print) 0453-8811
  • ISSN (Online) 3034-5413

Mathematical Modelling of Complex Oscillations During Ethylene Oxidation over Nickel Catalyst

PII
S30345413S0453881125020039-1
DOI
10.7868/S3034541325020039
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 66 / Issue number 2
Pages
91-103
Abstract
The article is devoted to the experimental and theoretical study of complex oscillations during ethylene oxidation on the nickel foil. Mathematical model was based on the 14-stage mechanism of reaction including the stages of oxidation and reduction of the Ni catalyst. An essential condition for the occurrence of an oscillatory behavior of the system was the adsorption of H and CO from the mobile pre-adsorption state. It was shown that for real values of the parameters, the mathematical model can describe both regular and irregular oscillations, as well as the mixed-mode oscillations observed in the experiment. For the first time oscillations with different properties and distinct mechanisms of their occurrence were detected in the same model. It was demonstrated that oscillations occurred as a result of a strong dependence of the reaction rate on the concentration of active sites both due to a variation in the concentration of the surface oxide or the surface carbon.
Keywords
окисление этилена никель колебательные режимы математическое моделирование оксид никеля карбонизация никеля
Date of publication
12.03.2025
Year of publication
2025
Number of purchasers
0
Views
26

References

  1. 1. Margolis L.Ya. // Adv. Catal. 1963. V. 14. P. 429. https://doi.org/10.1016/S0360-0564 (08)60342-9
  2. 2. Smolakova L., Kout M., Koudelkova E., Čapek L. // Ind. Eng. Chem. Res. 2015. V. 54. P. 12730. https://doi.org/10.1021/acs.jcer.5003425
  3. 3. Saraev A.A, Vinokurov Z.S, Kaichev V.V, Shmakov A.N, Bukhtiyarov V.I. // Catal. Sci. Technol. 2017. V. 7. P. 1646. https://doi.org/10.1039/C6CY026736
  4. 4. Kaichev V.V, Gladky A.Y., Prosvirin I.P., Saraev A.A., Hävecker M., Knop-Gericke A., Schlogl R., Bukhtiyarov V.I. // Surf. Sci. 2013. V. 609. P. 113. http://dx.doi.org/10.1016/j.susc.2012.11.012
  5. 5. Zhang X.L., Mingos D.M.P., Hayward D.O. // Catal. Lett. 2001. V. 72. P. 147. https://doi.org/10.23/A:1009036128275
  6. 6. Bychkov V.Yu., Tyulenin Yu.P., Slinko M.M., Korchak V.N. // Catal. Lett. 2007. V. 119. P. 339. https://doi.org/10.1007/s10562-007-9241-3
  7. 7. Gladky A.Yu., Ermolaev V.K., Parmon V.N. // Catal. Lett. 2001. V. 77. P. 103. https://doi.org/10.23/A:1012703631994
  8. 8. Bychkov V.Y., Tyulenin Y.P., Slinko M.M., Lomonosov V.I., Korchak V.N. // Catal. Lett. 2018. V. 148. P. 3646. https://doi.org/10.1007/s10562-018-2578-y
  9. 9. Bychkov V.Yu., Tyulenin Yu.P., Slinko M.M., Korchak V.N. // Proc. of the IX International Conference “Mechanisms of catalytic reactions”. St. Petersburg, Russia. 2012. P. 165. https://doi.org/10.1595/147106713X660233
  10. 10. Слинько М.М., Макеев А.Г. // // Кинетика и каталия. 2020. T. 61. № 4. C. 495. https://doi.org/10.1134/S0023158420040114
  11. 11. Slinko M.M., Korchak V.N. Peskov N.V. // Appl. Catal. A: Gen. 2006. V. 303. № 2. P. 258. https://doi.org/10.1016/j.apcata.2006.02.010
  12. 12. Lashina E.A., Kaichev V.V., Saraev A.A., Vinokurov Z.S., Chumakov N.A., Chumakov G.A., Bukhtiyarov V.I. // J. Phys. Chem. A. 2017. V. 121. P. 6874. https://doi.org/10.1021/acs.jpca.7b04525
  13. 13. Ustyugov V.V, Kaichev V.V., Lashina E.A., Chumakov N.A., Bukhtiyarov V.I. // Kinet. Catal. 2016. V. 57. P. 113. https://doi.org/10.1134/S0023158415060142
  14. 14. Lashina E.A., Kaichev V.V., Saraev A.A., Vinokurov Z.S., Chumakov N.A., Chumakov G.A., Bukhtiyarov V.I. // Top. Catal. 2020. V. 63. P. 33. https://doi.org/10.1007/s11244-019-01219-5
  15. 15. Krisher K., Etswirth M., Eril G. // J. Chem. Phys. 1992. V. 96. P. 9161. https://doi.org/10.1063/1.462226
  16. 16. Makeev A.G., Nieuwenhuys B.E. // J. Chem. Phys. 1998. V. 108. P. 3740. https://doi.org/10.1063/1.475767
  17. 17. Stuckless J.T., Wartnaby C.E., Al-Sarraf N., Dixon-Warren St. J.B., Kovar M., King D.A. // J. Chem. Phys. 1997. V. 106. P. 2012. https://doi.org/10.1063/1.473308
  18. 18. Kisliuk P. // J. Phys. Chem. Solids. 1957. V. 3. P. 95. https://doi.org/10.1016/0022-3697 (57)90054-9
  19. 19. Hasse W., Günter H.L., Henzler M. // Surf. Sci. 1983. V. 126. P. 479. https://doi.org/10.1016/0039-6028 (83)90746-X
  20. 20. Stuckless J.T., Al-Sarraf N., Wartnaby C., King D.A. // J. Chem. Phys. 1993. V. 99. P. 2202. https://doi.org/10.1063/1.465282
  21. 21. Winkler A., Rendulic K.D. // Surf. Sci. 1982. V. 118. P. 19. https://doi.org/10.1016/0039-6028 (82)90010-3
  22. 22. Brown W.A., Kose R., King D.A. // Chem. Rev. 1998. V. 98. P. 797. https://doi.org/10.1021/cr9700890
  23. 23. Klimesch P., Henzler M. // Surf. Sci. 1979. V. 90. P. 57. https://doi.org/10.1016/0039-6028 (79)90009-8
  24. 24. Feigerle C.S., Desai S.R., Overbury S.H. // J. Chem. Phys. 1990. V. 93. P. 787. https://doi.org/10.1063/1.459532
  25. 25. Madix R.J., Ertl G., Christmann K. // Chem. Phys. Lett. 1979. V. 62. P. 38. https://doi.org/10.1016/0009-2614 (79)80408-X
  26. 26. Delgado K.H., Maier L., Tischer S., Zellner A., Stotz H., Deutschmann O. // Catalysts. 2015. V. 5. P. 871. https://doi.org/10.3390/catal5020871
  27. 27. Yang W.S., Xiang H.W., Li Y.W., Sun Y.H. // Catal. Today. 2000. V. 61. P. 237. https://doi.org/10.1016/S0920-5861 (00)00368-0
  28. 28. Maier L., Schädel B., Delgado K.H., Tischer S., Deutschmann O. // Top. Catal. 2011. V. 54. P. 845. https://doi.org/10.1007/s11244-011-9702-1
  29. 29. Monnerat B., Kiwi-Minsker L., Renken A. // Chem. Eng. Sci. 2003. V. 58. P. 4911. https://doi.org/10.1016/j.ces.2002.11.006
  30. 30. Sales B.C., Turner J.E., Maple M.B. // Surf. Sci. 1982. V. 114. P. 381. https://doi.org/10.1016/0039-6028 (82)90692-6
  31. 31. Bychkov V.Yu., Tulenin Yu.P., Slinko M.M., Gordienko Yu.A., Korchak V.N. // Catal. Lett. 2018. V. 148. P. 653. https://doi.org/10.1007/s10562-017-2283-2
  32. 32. Makeev A.G., Peskov N.V., Semendyaeva N.L., Slinko M.M., Bychkov V.Yu., Korchak V.N. // Chem. Eng. Sci. 2019. V. 207. P. 644. https://doi.org/10.1016/j.ces.2019.06.053
  33. 33. Bowker M. // Top. Catal. 2016. V. 59. P. 663. https://doi.org/10.1007/s11244-016-0538-6
  34. 34. Zuhr R.A., Hudson J.B. // Surf. Sci. 1977. V. 66. P. 405. https://doi.org/10.1016/0039-6028 (77)90028-0
  35. 35. Behm R.J., Ertl G., Penka V. // Surf. Sci. 1985. V. 160. P. 387. https://doi.org/10.1016/0039-6028 (85)90782-4
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library