RAS Chemistry & Material ScienceКинетика и катализ Kinetics and Catalysis

  • ISSN (Print) 0453-8811
  • ISSN (Online) 3034-5413

XPS Study of [Ir(COD)Cl]—L—SiO Catalytic System

PII
S30345413S0453881125020075-1
DOI
10.7868/S3034541325020075
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 66 / Issue number 2
Pages
136-146
Abstract
The X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) spectroscopy were used to study the features of anchoring of the [Ir(COD)Cl] complex on the surface of modified silica gel L–SiO (where L is NCH–CH–CH–, N(CH)–CH–CH–CH–, NH–CH–) depending on the nature of the linker and the conditions of preparation of the systems. The catalytic activity was tested in reactions of gas-phase selective hydrogenation of propylene with parahydrogen (p-H). According to the XPS data, a single-site iridium catalyst is prepared in all cases. Analysis of the XPS spectra indicates the possibility of anchoring the complex through one of the Ir atoms while preserving the dimer. It was shown that at different durations of interaction of the iridium complex solution with modified NH–CH– silica gel approximately the same amount of the complex is anchored, but the nature of the complex coordination changes. For the sample obtained by long-term interaction of the complex solution with the modified support (24 h), a high increase in the NMR signal was observed at 60°C, while in the case of the sample prepared by short-term interaction (1 h), the signal increased with a rise in temperature to 80°C.
Keywords
рентгеновская фотоэлектронная спектроскопия металлоорганический комплекс иридия одноцентровый закрепленный катализатор селективное гидрирование парное присоединение
Date of publication
09.04.2025
Year of publication
2025
Number of purchasers
0
Views
20

References

  1. 1. The Handbook of Homogeneous Hydrogenation. J.G. de Vries, C.J. Elsevier, Eds, Wiley-VCH: Weinheim, 2007.
  2. 2. Skovpin I.V., Kovtunova L.M., Nartova A.V., Kvon R.I., Bukhtiyarov V.I., Koptyug I.V. // Catal. Sci. Technol. 2022. V. 12. P. 3247. https://doi.org/10.1039/D1CY022581
  3. 3. Encyclopedia of Reagents for Organic Synthesis. Wercott S.A., Parthasaraty S., Gilder P.G., Colacot T.J. Eds., John Wiley & Sons: Hoboken, NJ, 2018.
  4. 4. Hesp K.D., Stradiotto M. // Org. Lett. 2009. V. 11. P. 1449. https://doi.org/10.1021/ol900174f
  5. 5. Motokura K., Ding S., Usui K., Kong Y. // ACS Catal. 2021. V. 11. P. 11985. https://doi.org/10.1021/acscatal.1c03426
  6. 6. Skovpin I.V., Sviyazov S.V., Burueva D.B., Kovtunova L.M., Nartova A.V., Kvon R.I., Bukhtiyarov V.I., Koptyug I.V // Dokl. Phys. Chem. 2023. V. 512. P. 149. https://doi.org/10.1134/S0012501623600237
  7. 7. Lazaro G., Iglesias M., Fernandez-Alvarez F.J., Sanz Miguel P.J., Perez-Torrente J.J., Oro L.A. // ChemCatChem. 2013. V. 5. P. 1133. https://doi.org/10.1002/cctc.201200309
  8. 8. Zhang S., Wang H., Li M., Han J., Liu X., Gong J. // Chem. Sci. 2017. V. 8. P. 4489. https://doi.org/10.1039/c7sc00713b
  9. 9. Esfandiari M., Havaei G., Zahiri S., Mohammadnezhad G. // Coord. Chem. Rev. 2022. V. 472. 214778. https://doi.org/10.1016/j.ccr.2022.214778
  10. 10. Nartova A.V., Kvon R.I., Kovtunova L.M., Skovpin I.V., Koptyug I.V., Bukhtiyarov V.I. // Int. J. Mol. Sci. 2023. V. 24. P. 15643. https://doi.org/10.3390/ijms242115643
  11. 11. Skovpin I.V., Burueva D.B., Kovtunova L.M., Nartova A.V., Kvon R.I., Bukhtiyarov V.I., Koptyug I.V. // Appl. Magn. Reson. 2024. V. 55. P. 1275. https://doi.org/10.1007/s00723-024-01660-0
  12. 12. Buljubasich L., Franzoni M.B., Münnemann K. // Top. Curr. Chem. 2013. V. 338. P. 33. https://doi.org/10.1007/128_2013_420
  13. 13. Gutmann T., Ratajczyk T., Xu Y., Breitzke H., Grunberg A., Dillenberger S., Bommerich U., Trantzsche T., Bernarding J., Buntkowsky G. // Solid State NMR. 2010. V. 38. P. 90. https://doi.org/10.1016/j.ssnmr.2011.03.001
  14. 14. Duckett S.B., Mewis R.E. // Acc. Chem. Res. 2012. V. 45. P. 1247. https://doi.org/10.1016/S0079-6565 (98)00027-2
  15. 15. Bowers C.R., Weitekamp D.P. // J. Am. Chem. Soc. 1987. V. 109. P. 5541. https://doi.org/10.1021/ja00252a049
  16. 16. Bouchard L.-S., Kovtunov K.V., Burt S.R., Anwar M.S., Koptyug I.V., Sagdeev R.Z., Pines A. // Angew. Chem. Int. Ed. Engl. 2007. V. 46. P. 4064. https://doi.org/10.1002/anie.200700830
  17. 17. Mondloch J.E, Wang Q., Frenkel A.I., Finke R.G. // J. Am. Chem. Soc. 2010. V. 132. P. 9701. https://doi.org/10.1021/ja1030062
  18. 18. Moulder J.F., Stckle W.F., Sobol P.E., Bomben K.D. Handbook of X-ray Photoelectron Spectroscopy. J. Chastain Eds. Eden Prairie. MN: Perkin-Elmer, 1992.
  19. 19. Surface Analysis by Auger and X-ray Photoelectron Spectroscopy. D. Briggs, J.T. Grant, Eds. IM Publications and Surfacespectra Limited, Cromwell Press, Trowbridge, UK, 2003.
  20. 20. Fernando N.K., Cairns A.B., Murray C.A., Thompson A.L., Dickerson J.L., Garman E.F., Ahmed N., Ratcliff L.E., Regoutz A. // J. Phys. Chem. 2021. V. 125. P. 7473. https://doi.org/10.1021/acs.jpca.1c05759
  21. 21. Using XPS PEAK Version 4.1. http://sun.phy.cuhk.edu.hk/~surface/XPSPEAK/XPSPEAKusersguide.doc [Electronic resource]
  22. 22. Lea A.S., Swanson K.R., Haack J.N., Castle J.E., Tougaard S., Baer D.R. // Surf. Interf. Anal. 2010. V. 42. P. 1061. https://doi.org/10.1002/sia.3304
  23. 23. Nartova A.V., Kvon R.I., Kovtunova L.M., Dmitrachkov A.M., Skovpin I.V., Bukhtiyarov V.I. // Kinet. Catal. 2024. V. 65. № 2. P. 202. https://doi.org/10.1134/s002315842361213
  24. 24. Groom C.R., Bruno J.J., Lightfoot M.P., Ward S.C. // Acta Cryst. 2016. V. 72. P. 171. https://doi.org/10.1107/S2052520616003954
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library